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Abstract
Special measurement effects including the method and testlet effects are common issues in
educational and psychological measurement. They are typically covered by various bifactor
models or models for the multiple traits multiple methods (MTMM) structure for continuous data
and by various testlet effect models for categorical data. However, existing models have some
limitations in accommodating different type of effects. With slight modification, the generalized
partially confirmatory factor analysis (GPCFA) framework can flexibly accommodate special
effects for continuous and categorical cases with added benefits. Various bifactor, MTMM and
testlet effect models can be linked to different variants of the revised GPCFAmodel. Compared to
existing approaches, GPCFA offers multidimensionality for both the general and effect factors (or
traits) and can address local dependence, mixed-type formats, and missingness jointly. Moreover,
the partially confirmatory approach allows for regularization of the loading patterns, resulting in a
simpler structure in both the general and special parts. We also provide a subroutine to compute
the equivalent effect size. Simulation studies and real-data examples are used to demonstrate the
performance and usefulness of the proposed approach under different situations.
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Introduction

Special measurement effects including testlet and method effects due to different testlet formats,
wording, rater characteristic, and so on are common in educational and psychological mea-
surement. Broadly speaking, these special effects can be divided into two groups, each with
various psychometric models designed to handle them. Special effects for continuous data are
usually analyzed from the perspective of factor analysis (FA, Brown, 2015) with various models
for bifactor (Reise et al., 2010) and multi-trait multi-method (MTMM; Campbell & Fiske, 1959)
structures available. In contrast, special effects for categorical data are typically addressed from
the perspective of item response theory (IRT) with various testlet effect models (Bradlow et al.,
1999) available. The two perspectives are usually discussed separately in the literature, although
they are statistically communicable by considering uni- or multidimensional IRTas categorical FA
(Takane & De Leeuw, 1987).

Recently, a great deal of modeling developments can be found from both perspectives. For
special effects with continuous data, various new models for bifactor and MTMM structures have
been proposed (e.g., Esra & Atar, 2021; Geiser & Simmons, 2021; Wang et al., 2018). Note that
both bifactor and MTMM-type models are usually adopted under the context of method effects.
Standard-type bifactor models are confirmatory in nature, with one general factor, multiple or-
thogonal special factors, and a fully specified loading pattern (e.g., Brown, 2015; Chen et al.,
2006; Holzinger & Swineford, 1937). When the loading pattern is partially specified, it becomes
an exploratory bifactor model which has enjoyed a rediscovery more recently (e.g., Giordano &
Waller, 2020; Jennrich & Bentler, 2011; Reise, 2012; Reise et al., 2010). Although several
methods are available, the preferred approach to exploratory bifactor analysis is the classic or
derived Schmid-Leiman (SL; Schmid & Leiman, 1957) methods, which are subject to the
proportionality constraints and hierarchical bifactor structure (Giordano & Waller, 2020). Taking
into account that the general factor is fully specified (e.g., usually measured by all items), these
models are partially rather than fully exploratory. Moreover, there is only one general factor and
local independence is assumed in all existing bifactor models, which could further limit the
applications of this type of models. Compared to bifactor models, models for MTMM are
confirmatory only, but have more complex structures, which can be used to model the rela-
tionships among multiple traits (e.g., general factors) and methods (e.g., special factors). In its
most general form, MTMM structure allows for multiple general factors, correlated special
factors, and correlated uniqueness or measurement errors (i.e., local dependence). However,
MTMM-type models are only identified under certain conditions. Eid et al. (2006) have detailed
the structure and restriction of several identified MTMM-type models, including the correlated
trait correlated uniqueness (CTCU) model, correlated trait uncorrelated method (CTUM) model,
and correlated trait correlated method (CTCM)model. These three models are most widely used in
the MTMM context (e.g., Brown, 2015; Kyriazos, 2018; Marsh & Byrne, 1993). Specifically,
CTCU allows for local dependence. CTUM can be considered as an extension of the standard
bifactor model with multiple general factors. CTCM can be problematic, especially when the
number of special factors is small, and the correlated trait correlated method model with one
method less (CTC(M-1)) is usually adopted instead. However, all these models are confirmatory
by nature, making them inappropriate for any exploratory settings.

For special effects with categorical data, testlet effect models under the context of IRTare often
employed to model the effect of a common stimulus within a bundle of items. The Bayesian
random effect model on dichotomous responses proposed by Bradlow et al. (1999) is an early
prototype of a testlet effect model. Wang et al. (2002) further extended the random effects model to
polytomous responses and released the restriction of constant testlet effects. After that, Wang and
Wilson (2005) proposed the Rasch testlet effect model as a special case of the multidimensional
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Rasch model with the ability to deal with both dichotomous and polytomous responses. Based on
Rasch testlet effect model, some multidimensional testlet effect models have been proposed
recently (Zhan et al., 2014, 2015). In general, testlet effect models are confirmatory by nature, with
only one general factor (i.e., trait) measured by all items and the assumption of local
independence.

For the bifactor and MTMM-type models, the maximum likelihood estimation (MLE) im-
plemented through the expectation-maximization algorithm is widely used. In comparison, the
Bayesian approach is often employed in testlet effect models, which has several benefits
(Fukuhara &Kamata, 2011;Wainer et al., 2007) including its flexibility and scalability to complex
scenarios. Recently, a generalized partially confirmatory factor analysis (GPCFA) framework with
mixed Bayesian Lasso methods was introduced (Chen, 2021). This Bayesian-based approach
provides a regularized and flexible framework for factor analysis, with clear advantages such as
making the exploratory and confirmatory approaches two ends of a continuum, handling both
continuous and categorical data, and regularizing the complex loading structure and local de-
pendence simultaneously.

In this research, we will modify the GPCFA framework to accommodate special effects for
continuous and categorical data with an additional method to measure the effect size. As a result,
the revised GPCFA can cover and extend many traditional models for special effects with added
benefits. Specifically, bifactor models can be extended with multiple general factors and local
dependence, and MTMM-type models can be extended to address partially exploratory settings
with partially specified loading patterns, while extended testlet effect models can enjoy all above
benefits. It will also be easier to explore and compare different models for special effects within a
unified framework and effect size measure. Moreover, all models will automatically inherit
GPCFA’s other benefits such as the partially confirmatory design and addressing mixed-type
variables with missingness and local dependence.

While building on the GPCFA framework, this research introduces several new contributions.
First, we extend the GPCFA framework by dividing the factor structure into the general and
special factors to accommodate various special effects. Second, we clarify how the revised
GPCFA can incorporate or be connected with different bifactor, MTMM, or testlet structures,
providing not only a unified framework to understand different models for special effects but also
a chance to specify novel models for potential applications. For example, one can specify new
bifactor, MTMM or testlet effect models that can handle data mixed with continuous, dichot-
omous, and polytomous responses and missingness, with or without regularization or local
dependence. Third, we present a method to homogeneously measure and compare effect sizes
across various settings. Fourth, we demonstrate the effectiveness of the revised framework and
effect size measure through two simulation studies for continuous and categorical data, with
illustrations of two real-life examples for applied researchers.

Theoretical Framework

GPCFA for special effects

The GPCFA is a factor analytic model with regularization of the loading pattern and local de-
pendence, which makes it in between the exploratory and confirmatory ends (Chen, 2021). For
complete description of this partially confirmatory methodology and related algorithms, readers
can refer to the GPCFA literature (e.g., Chen, 2020, 2021; Chen et al., 2021).

Assume there are N respondents and J observed variables (i.e., items) with K latent factors.
The observed response matrixX ¼ ðxijÞN×J contains both continuous and categorical variables. To
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provide a unified framework for analysis, latent response matrix Y ¼ ðyijÞN×J is introduced using
different link functions:

xij ¼

8>><
>>:

yij for continuous itemsXMj

m¼1
m � I�αj,m ≤ yj ≤ αj,mþ1

�
for categorical items

(1)

where categorical item xij has Mj categories defined by the threshold vector

αj ¼ ð�∞ ¼ αj, 1 < αj, 2 < , :::, < αj,mþ1 ¼ þ∞ÞT and IðAÞ is an indicator function that takes 1 if A
is true and 0 otherwise. In this way, data mixed with both continuous and categorical items can be
addressed homogeneously. The latent responses Y can be expressed as:

Y ¼ μþ ΛFþ E (2)

where the vector μ represents the J × 1 intercept vector, matrix Λ represents the J ×K loading
matrix, F represents K factors with the K ×K factorial covariance matrix Φ, and E represents the
J × 1 residuals with the J × J residual covariance matrix Ψ.

Loading estimation structure is conducted through different settings of the design matrix
Q ¼ ðqjkÞJ×K, where qjk ¼ �1, 0 and 1 standing for the unspecified (Lasso parameters), zero-fixed
and specified loadings, respectively. Specified loadings are free to be estimated by regular es-
timation (i.e., free parameters), and regularization for unspecified loadings and local dependence
can be addressed simultaneously by Bayesian adaptive Lasso and covariance Lasso, as shown in
Appendix A.

To accommodate the GPCFA framework to deal with the method and testlet effects, several
adjustments of the structure are needed. The factors are separated into two parts: the construct part
(general factors) and the special effects part (special factors). We will use subscript “g” and “s” to
denote the general and special factors and related loadings, respectively. Here, we use the fol-
lowing notations: total K ¼ Kg þ Ks factors with Kg and Ks for the general and special factors,
respectively. The latent responses Y become:

Y ¼ μþ ΛgFg þ ΛsFs þ E (3)

where matrixΛg represents J ×Kg general loading matrix, Fg representsKg general factors; matrix
Λs represents J ×Ks special loading matrix, Fs representsKs special factors; andE represents J × 1
measurement errors or residuals. Both loading matrices can be partially unspecified depending on
the context. When all loadings are either specified or zero-fixed, the model is fully confirmatory.
When more and more loadings are unspecified, the model becomes increasingly exploratory-
inclined. The factorial covariance matrix Φ can be separated as:

Φ ¼
�
Φg 0
0 Φs

�
(4)

whereΦg is theKg ×Kg general factorial covariance,Φs is aKs ×Ks diagonal matrix represents the
special factor covariance matrix, as different special effects are usually independent of each other,
and 0 is a zero matrix.

In practice, the general factor usually refers to latent construct or trait and the special factor
usually derived from the study design, test format, or measurement method. Figure 1 illustrates an
example of the revised GPCFAmodel with 9 items and two general and two special factors. In this
example, one loading per item is specified in both general and special factors, while the other
loadings in the general factors are unspecified, and those in the special factors are set to zero.
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Additionally, the general factors are correlated while the special factors are orthogonal. Mean-
while, the items can be continuous or categorical and local independence is assumed. In general,
one can specify the Q-matrix, factor structure (correlated or orthogonal), local dependence, and
type of each item to accommodate various bifactor, MTMM, or testlet structures.

The matrix equations and corresponding Q matrix is represented as follows:

y1

y2

y3

y4

y5

y6

y7

y8

y9

2
66666666666666666664

3
77777777777777777775

¼

μ1

μ2

μ3

μ4

μ5

μ6

μ7

μ8

μ9

2
66666666666666666664

3
77777777777777777775

þ

λg1, 1 λs3, 1 0
λg1, 2 λs3, 2 0
λg1, 3 λs3, 3 0
λg1, 4 0 λs4, 4
λg1, 5 0 λs4, 5

λg2, 6 λs3, 6 0
λg2, 7 λs3, 7 0
λg2, 8 0 λs4, 8
λg2, 9 0 λs4, 9

2
6666666666664

3
7777777777775
�

Fg1

Fg2

Fs1

Fs2

2
666664

3
777775þ

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

2
66666666666666666664

3
77777777777777777775

,Q ¼

1 �1 1 0
1 �1 1 0
1 �1 1 0
1 �1 0 1
1 �1 0 1
�1 1 1 0
�1 1 1 0
�1 1 0 1
�1 1 0 1

2
6666666666664

3
7777777777775

(5)

For model identification, two constraints are necessary: setting all factorial variances to one,
which constrains Φ as a correlation matrix; and specifying a few loadings for each factor when
local independence is assumed (Chen, 2021). To address local dependence, at least one loading per
item must be specified. Additionally, all latent response vectors for both continuous and cate-
gorical variables will be standardized to maintain consistency. All parameters will be iteratively
implemented by MCMC. It is worth noting that identification is less stringent under the Lasso
regularization: GPCFA models with or without local independence can be identified with a few
loadings specified per factor or one loading specified per item, respectively (e.g., Chen, 2020,
2021; Chen et al., 2021).

Accommodating Bifactor Models

The revised GPCFA framework can accommodate various bifactor models. Specifically, a
standard bifactor model with one general factor can be obtained by settingKg ¼ 1 and having each
item load on only one of several method dimensions. The first column of the loading matrix in
equation (5) is then fully specified as a general factor, and the factorial correlation matrix becomes
a diagonal matrix. It is a fully confirmatory model and the design matrixQ consists of 0 and 1 only
(i.e., all loadings are specified). Figure 2 provides an example of the standard bifactor model.

The model becomes partially confirmatory when the loading matrix for the special factors are
partially unspecified, which is similar to an exploratory bifactor model allowing cross-loadings on
special factors. It is worth noting that the SL-type exploratory bifactor models are subject to the
proportionality constraint due to the SL-transformation procedure (Yung et al., 1999). This
constraint requires a linear combination between general factor loadings and special factor
loadings. Considering that the general factor is fully specified (i.e., no exploration needed), these
models are partially rather than fully exploratory.

In comparison, the revised GPCFA is subject to the identification constraint of a few specified
loadings per factor (under the assumption of local independence), rather than the SL constraint.
But one can evaluate the constraint post hoc. Under the GPCFA framework, the standard bifactor
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model can be extended with multiple general factors which can be correlated. In addition, both the
loading matrices for the general and special factors can be partially unspecified, making the
extended bifactor model exploratory-inclined. Compared to exploratory bifactor models, the
revised GPCFA offers more flexibility and scalability by covering multiple general factors, mixed-
type data, missingness, and local dependence.

Accommodating MTMM structures

The separation of general and special factors in the revised GPCFA framework allows us to
accommodate several MTMM structures with four examples shown in Figure 3.

The correlated trait correlated uniqueness (CTCU) model can be directly estimated by the
original GPCFA model by considering different traits as different factors with local dependence.
The observed variable Y can be decomposed into common trait variable (general factor) Fg and
residual E with intercept μ ¼ 0:

Figure 1. An example of revised GPCFA.
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Y ¼ ΛgFg þ E (6)

The residual in CTCU can be correlated between items within the same method effects.
Namely, the correlated residual is equivalent to the special factor substantively, both of which refer
to the method effect. However, the effect size is incalculable unless one can summarize multiple
pairs of correlated residuals within the method reasonably.

Figure 2. Standard bifactor model.
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The correlated trait uncorrelated method (CTUM) is equivalent to the extended bifactor model,
with multiple general factors that are correlated and multiple special factors that are uncorrelated:

Y ¼ ΛgFg þ ΛsFs þ E (7)

where the general factors and special factors denote the trait andmethod components, respectively.
The general and special loadings Λg,Λs are equivalent to trait and method loadings.

Correlated trait correlated method (CTCM) and CTC(M-1) are more generalized than CTUM
by allowing all special factors to be correlated. In CTCM, the covariance matrix of special factors,
Φs can be non-diagonal. However, it is often subjected to the issue of identification. CTC(M-1) is
a special variant of the CTCM which contains one method factor less than that in CTCM to
identify the model. Even though CTC(M-1) solves the identification problem of CTCM, it is

Figure 3. Structures of MTMM Related Models: (a) Correlated Trait Correlated Uniqueness model; (b)
Correlated Trait Uncorrelated Method model; (c) Correlated Trait Correlated Method model; (d)
Correlated Trait Correlated Method model with One method factor less than methods considered.
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difficult to distinguish between the sizes of different method effects due to the correlated methods.
The transformation of GPCFA to different MTMM models will not change the characteristic of
these models and scholars can still refer to the guidelines of MTMM to choose the appropriate
model (Eid et al., 2006). On the other hand, one can make the models partially confirmatory by
allowing unspecified loadings in the general or special loading matrices.

Accommodating Testlet Effect Models

This section introduces the transformation of GPCFA to accommodate several testlet effect
models under the IRT context which are mainly for dichotomous responses. With the local in-
dependence assumption in IRT, the residual covariance matrixΨ of GPCFA restricted to diagonal
matrix. The response matrix of GPCFA in equation (3) is conditionally distributed as:

Y
��F,ω∼N

�
ΛgFg þ ΛsFs þ μ,Ψ

�
(8)

It leads to the item response function with the normal ogive model, namely, using the cu-
mulative function of the standard normal distribution Φ* as the link function:

P xij¼ 1jFgi,Fsi,ω
� � ¼ P yij > 0jFgi,Fsi,ω

� � ¼ Φ* λgjFgi þ λsjFsi þ μj
��

ψjj
1=2

� 	
(9)

where ω contains all unknown model parameters in Λg,Λs, μ,Φ andΨ. The normal ogive
function and logistic function are almost indistinguishable with linear transformation (Dinero &
Haertel, 1977) and they can be connected by a constant 1.702 (Camilli, 1994). In the above model,
we set the scale of the latent response y as one for model identification, which is equivalent to the
categorical confirmatory factor analysis (CCFA) parameterization with the same normal ogive link
function.

Alternatively, one can make model identified by setting the ψjj ¼ 1, resulting in the multi-
dimensional item response theory (MIRT) parameterization:

P xij ¼ 1jθgi, θsi
� � ¼ Φ* agjθgi þ asjθsi � dj

�� 	
(10)

The agj and asj indicate the discrimination parameters for the general factor and special (testlet)
factor, while dj indicates the location of the item under MIRT, which is similar to the intercept μj in
GPCFA. θgi is the general latent trait in IRT, which follows multivariate normal distributions. θsi
(i.e., Fsi in revised GPCFA) indicates the random effect from response i due to testlet s. It is evident
that the above solutions are transformable with revised GPCFA:

agj ¼ λgj
�
ψjj

1=2

asj ¼ λsj
�
ψjj

1=2

dj ¼ �μj
�
ψjj

1=2

(11)

Different testlet effect models can be obtained as follows: The general testlet effect model (Li
et al., 2006) can be transformed from GPCFA by restricting the number of general factors to one
and keeping the residual covariance matrixΨ as a diagonal matrix, which is essentially the same as
the bifactor factor analysis model for dichotomous responses (Gibbons & Hedeker, 1992). The
formula is similar to equation (10) with θsieN 0, 1ð Þ:

The two-parameter normal ogive (2PNO) testlet effect model proposed by Bradlow et al.
(1999) can be written for each latent response yij as:
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yij ¼ aj θgi þ θsi � bj
� �

where θsieNð0, σ2θsiÞ. Compared to equation (10), it adds a proportional constraint to testlet θsi
(special factor Fsi in GPCFA) and replaces the location parameter dj with difficulty parameter bj,
while keeping the testlet effect constant among all testlets. The 2PNO testlet effect model can be
re-expressed as the extended 2PNO testlet effect model (Chen et al., 2006; Rijmen, 2010):

P xij¼ 1jθgi, θsi
� � ¼ Φ* agjθgi þ agjCsθsi � agjbj

� �
(13)

The transformation between GPCFA and the extended 2PNO testlet effect model is:

agj ¼ λgj
�
ψjj

1=2

agjσθsi ¼ λsj
�
ψjj

1=2

agjbj ¼ �μj
�
ψjj

1=2

(14)

The constant Cs is for testlet s and equals to the standard deviation of θsi. Alternatively, one can
use the testlet discrimination parameter asj in equation (13), which equals to the product of
discrimination on the general trait and the standard deviation of testlet effect: asj ¼ agjσθsi. Since
the variance for all testlets is the same in this model (σ2θsi ¼ σ2θs ), the corresponding variances for
all special factors will be equal in GPCFA.

In the extended 2PNO testlet effect model, if we restrict the discrimination parameters agj to
one and release the constraint of testlet variance, it can be converted to the one-parameter Rasch
testlet effect model (Wang & Wilson, 2005):

P xij¼ 1jθgi, θsi
� � ¼ Φ* θgi þ θsi � bj

� �
(15)

Here, the general trait loadings are equal to one for all items. The loading represents the dis-
criminating power, and the variance of true-score equals to the square of the loading (McDonald,
2013). The variance of testlet (σ2θsiÞ represents the testlet effect, which is equivalent to the average
of square loadings of the special factor in GPCFA.

In addition, GPCFA can also estimate the extended Rasch testlet effect model, like within-item
multidimensional testlet effect model (Zhan et al., 2014, 2015) by releasing the constraint of
special factor allocation (i.e., adding the number of special factors). Moreover, polytomous
responses or mixed-type formats, with missingness and local dependence, can be readily ad-
dressed within the GPCFA framework. However, the GPCFA cannot be transformed into the
three-parameter testlet effect model with guessing parameter yet.

Equivalent Effect Size

Typically, the effect size refers to the amount of variance due to the random effect when the general
factor or trait is standardized (Wang & Wilson, 2005). Since all factors are standardized under
GPCFA, we define the equivalent effect size measure D, the average of the square loadings on the
random effect (i.e., special factor). Moreover, due to the partially confirmatory setting, we separate
the random effect into two parts. For specified loadings in the loading vector of the special factor,
all loading estimates will be included. For unspecified loadings, we only consider those loading
estimates with absolute values greater than the cutoff of 0.1, which is typically used under the
Lasso scenarios. We denote the J × 1 loading estimation vector for special factor k as Λk ¼
ðΛ0

k ,Λ
00
kÞT where Λk is the kth column of Λ. The J

0
× 1 vector Λ

0
k and J

00
× 1 vector Λ

00
k are the
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specified and unspecified parts within the cutoff value, respectively. The effect size is calculated
as:

Dk ¼
PJ 0

j¼1 λ0jk
� �2 þPJ 00

j¼1 λ00 jk
� �2

J 0 þ J 00 , where
���λ00jk��� ≥ 0:1 (16)

Simulation Studies

Two simulation studies were conducted to evaluate the performance of the proposed model on
continuous and categorical data. Based on previous research (Chen, 2021) and real-life examples,
a sample size of N = 1000 was used, and two effect sizes (D = 0.1 and 0.2) were simulated.
Different conditions of local dependence and other settings were manipulated as shown in the
following studies. The true diagram for two simulation studies is given in Appendix C. For each
condition cell, 200 replications were simulated and analyzed. The performance assessment for
each parameter includes the bias (BIAS), the mean of the standard error (SE), the root mean square
error (RMSE) between the estimates and the true values, and the percentage of estimates that
differed significantly from zero (α ¼ :05Þ based on the highest posterior density (HPD) interval
(SIG%). The SIG% indicates the percentage of Type I error for zero Lasso loadings.

To stabilize most Markov chains (i.e., the estimated potential scale reduction (EPSR) <1.1
(Gelman et al., 2014)), 20,000 iterations of burn-in draws were performed, followed by additional
20,000 iterations. All studies used the LAWBL package (Chen, 2022) in the R (R Development
Core Team, 2021) computing environment. The sim_lvm and pcfa functions in the package were
used to generate and analyze the data, respectively. A sample implementation code is provided in
Appendix D.

Study 1: Model Performance and Comparisons of Special Effects for Continuous Data
under Local Dependence

In this study, we evaluated the performance of the proposed models for special effects for
continuous data under local dependence. We set the number of general factors and special factors
as Kg = Ks = 3, with six items per special factor (i.e., J = 18). The true loading matrix was:

ΛT ¼

λg1 λg2 λg3 λg4 λg5 λg6 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0
λg0 λg0 λg0 λg0 λg0 λg0 λg1 λg2 λg3 λg4 λg5 λg6 λg0 λg0 λg0 λg0 λg0 λg0
λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg0 λg1 λg2 λg3 λg4 λg5 λg6
λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0
λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0
λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1

2
6666664

3
7777775

where major loadings for each general factor were set from 0.5 to 0.75 with a 0.05 interval for λg1
to λg6. Each special factor had 6 identical nonzero loadings determined by effect size (e.g., if the
effect sizeD = 0.1, all nonzero loading would be set around λs1 ¼ 0:3162 in special factors). Other
loadings were set as λg=s0 ¼ 0: All nonzero loadings in the true matrix were estimated as specified
loadings, others in general factors were set as unspecified and in special factors were set as zero.
The design matrix Q was:
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Two factorial correlations between general factors were investigated:fkk 0 ¼ 0:3 and 0.6, where
k and k

0
= 1 to 3 and k ≠ k

0
. For local dependence, nonzero off-diagonal elements of Ψ were

ψ13 ¼ ψ31 ¼ ψ23 ¼ ψ32 ¼ ψ46 ¼ ψ64 ¼ ψ56 ¼ ψ65 ¼ 0:2. Other off-diagonal terms were
ψ0 ¼ 0.

Table 1 presents the simulation results for continuous variables. Due to the symmetry of the
design, the loading estimates are averaged across the general or special factors, and details of
loading recovery for general factors are shown in Appendix B. The overall estimation for small
effect size was better than the large one. Specifically, the general factor loading recovery was
satisfactory for small effect size and small factorial correlation. While in condition of large
factorial correlation, the model could overestimate SE (i.e., ∼.1) and have relatively low SIG% for
large effect size. The recovery of special factor loadings and local dependence were similar, which
was acceptable in terms of BIAS, RMSE and SE, while the SIG% was poor. The power of local
dependence decreased when the related true loadings increased, which informed that it was
increasingly difficult to detect local dependence with large loadings. All three special factors’
effect size (i.e., D) were estimated perfectly. For factorial correlations’ estimation, the recovery
was satisfactory except for the SIG% and small factorial correlation was slightly better than the
large one.

Study 2: Model Performance and Comparisons of Special Effects for Categorical Data

In this study, we evaluated the performance of the revised GPCFA for special effects with
categorical data under the assumption of local independence, which are common in testlet effect
models. We investigated two levels of the number of categories, M = 2 and 4, for all items. The
number of general factors and special factors were set as Kg = 1 and Ks = 3, respectively, with six
items per special factor, namely, J = 18. The true loading matrix was set as:

ΛT ¼
λg1 λg2 λg3 λg4 λg5 λg6 λg1 λg2 λg3 λg4 λg5 λg6 λg1 λg2 λg3 λg4 λg5 λg6
λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0
λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0
λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1 λs0 λs0 λs0 λs0 λs1 λs1

2
664

3
775

General factor loadings were set from 0.5 to 0.75 with an interval of 0.05, repeated three times.
All 6 nonzero loadings for each special factor were determined by the effect size, as in study 1. All
these loadings with nonzero true values were set as specified loadings which were freely esti-
mated. Other loadings were set as λg=s0 ¼ 0 and were estimated by regularization.

Table 2 summarizes the simulation results for categorical variables. The general factor loading
estimates were similar across three parts (λg1 to λg6) due to the repeated design, and the average of
three parts was displayed to save space. The estimation recovery for loadings on general factors
was satisfactory for all four conditions. More specifically, estimation on small effect size was
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slightly better than large one. The recovery of special factor loadings was poor with large SE and
lower power (i.e., SIG%). However, the effect size estimates were significant and satisfactory for
all conditions, similar to study 1. The results forM = 2 and 4 were similar. The desirable results for
zero loadings were found with nearly zero Type I error rates. The parameter set in this study can be
seen as an extension of the classic Rasch testlet effect model. The results suggest that GPCFA has
satisfactory performance in complex testlet cases.

Table 1. Simulation Results for Study 1.

Par True

f = 0.3 f = 0.6

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

D = 0.1
λg1 0.5 0.002 0.036 0.086 0.998 �0.013 0.044 0.139 1.000
λg2 0.55 0.001 0.032 0.087 1.000 �0.019 0.044 0.140 1.000
λg3 0.6 �0.002 0.042 0.086 1.000 �0.019 0.055 0.135 1.000
λg4 0.65 0.005 0.049 0.089 1.000 �0.021 0.060 0.136 1.000
λg5 0.7 �0.018 0.038 0.082 1.000 �0.054 0.064 0.127 1.000
λg6 0.75 �0.003 0.025 0.085 1.000 �0.042 0.052 0.131 1.000
λs1 0.316 �0.022 0.101 0.122 0.650 �0.025 0.102 0.122 0.632
D1 0.1 0.003 0.012 0.025 1.000 0.003 0.012 0.025 1.000
D2 0.1 0.013 0.018 0.024 1.000 0.013 0.018 0.024 1.000
D3 0.1 0.030 0.033 0.027 1.000 0.026 0.030 0.027 1.000
λg=s0 0 0.010 0.031 0.097 0.000 0.025 0.042 0.131 0.000
ψ13 0.2 �0.036 0.047 0.078 0.620 �0.037 0.047 0.076 0.625
ψ23 0.2 �0.038 0.048 0.082 0.450 �0.040 0.049 0.081 0.425
ψ46 0.2 �0.052 0.058 0.101 0.025 �0.035 0.041 0.096 0.190
ψ56 0.2 �0.139 0.139 0.068 0.000 �0.132 0.133 0.072 0.000
fkk0 0.3/0.6 �0.040 0.054 0.168 0.082 �0.088 0.094 0.196 0.968

D = 0.2
λg1 0.5 �0.009 0.061 0.127 0.938 �0.059 0.102 0.198 0.707
λg2 0.55 �0.008 0.060 0.135 0.942 �0.063 0.106 0.211 0.740
λg3 0.6 �0.037 0.085 0.119 0.938 �0.078 0.133 0.192 0.805
λg4 0.65 0.015 0.145 0.118 0.947 �0.044 0.191 0.181 0.812
λg5 0.7 �0.034 0.079 0.119 0.958 �0.109 0.140 0.191 0.825
λg6 0.75 0.009 0.068 0.121 0.958 �0.068 0.126 0.191 0.838
λs1 0.447 �0.064 0.186 0.118 0.704 �0.081 0.194 0.126 0.596
D1 0.2 �0.042 0.053 0.042 1.000 �0.047 0.057 0.043 1.000
D2 0.2 0.061 0.064 0.033 1.000 0.068 0.071 0.034 1.000
D3 0.2 �0.011 0.027 0.032 1.000 �0.039 0.046 0.035 1.000
λg=s0 0 0.007 0.060 0.131 0.000 0.042 0.089 0.194 0.000
ψ13 0.2 �0.029 0.046 0.065 0.830 �0.018 0.042 0.071 0.830
ψ23 0.2 �0.030 0.045 0.069 0.760 �0.018 0.042 0.075 0.735
ψ46 0.2 �0.152 0.153 0.050 0.000 �0.133 0.135 0.065 0.000
ψ56 0.2 �0.195 0.195 0.014 0.000 �0.191 0.191 0.022 0.000
fkk0 0.3/0.6 �0.025 0.079 0.210 0.158 �0.166 0.203 0.298 0.348

Note. λg1eλg6 averaged across all general factors; λs1 averaged across all special factors; λg=s0 averaged across all zero loading
estimates; D: effect size; For fkk0 , k and k

0
= 1 to 3 and k ≠ k

0
; RMSE: root mean square error; SE: standard error; SIG%:

percent of estimates differed from zero significantly (α ¼ :05).
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Empirical Examples

Study 1: Humor Styles Questionnaire: Special Effect for Continuous Data

It is common to encounter special effects such as method effects due to wording, item formats, or
reverse items in multidimensional psychological scales. In this study, the Humor Styles Ques-
tionnaire (HSQ) (Martin et al., 2003) was used to test if there’s a method effect for the reverse
items using the GPCFA model. The HSQ consists of 32 items with four general factors, including
11 reverse items (Appendix E). The public dataset from 1070 respondents can be found at https://
openpsychometrics.org/_rawdata/, which include 130 missing values.

Taking into account the method effect, we can specify each item to load exclusively on one
general factor, with the 11 reverse items for a special factor for reverse wording. This design
represents a special case of the MTMM structure with multiple traits, local independence and one
method, which will be referred to as the baseline model. With all other loadings set as unspecified
and estimated with regularization, we can evaluate two GPCFA models with and without local
dependence between items. Estimates of local dependence and loading can be found in Table 3.
Considering local dependence, the number of cross-loadings for general factors reduced from

Table 2. Simulation Results for Study 2.

Par True

M = 2 M = 4

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

D = 0.1
λg1 0.5 0.004 0.037 0.064 1.000 0.001 0.030 0.060 1.000
λg2 0.55 �0.002 0.035 0.063 1.000 �0.005 0.029 0.059 1.000
λg3 0.6 0.000 0.032 0.064 1.000 0.002 0.026 0.061 1.000
λg4 0.65 �0.005 0.030 0.064 1.000 �0.004 0.024 0.061 1.000
λg5 0.7 0.004 0.029 0.064 1.000 0.002 0.023 0.063 1.000
λg6 0.75 0.001 0.027 0.064 1.000 �0.001 0.021 0.062 1.000
λs1 0.316 �0.053 0.075 0.167 0.101 �0.038 0.058 0.148 0.243
D1 0.1 �0.019 0.023 0.030 1.000 �0.015 0.019 0.030 1.000
D2 0.1 �0.016 0.020 0.034 1.000 �0.015 0.019 0.037 1.000
D3 0.1 �0.017 0.022 0.042 1.000 �0.015 0.019 0.044 1.000
λg=s0 0 0.019 0.037 0.113 0.000 0.018 0.032 0.099 0.000

D = 0.2
λg1 0.5 0.003 0.040 0.082 1.000 �0.003 0.034 0.078 1.000
λg2 0.55 �0.005 0.039 0.080 1.000 �0.012 0.035 0.077 1.000
λg3 0.6 �0.007 0.037 0.083 1.000 �0.006 0.031 0.080 1.000
λg4 0.65 �0.014 0.038 0.083 1.000 �0.013 0.031 0.081 1.000
λg5 0.7 0.021 0.041 0.088 1.000 0.012 0.032 0.086 1.000
λg6 0.75 0.014 0.037 0.088 1.000 0.004 0.027 0.086 1.000
λs1 0.447 �0.048 0.079 0.165 0.567 �0.028 0.058 0.145 0.775
D1 0.2 �0.039 0.045 0.054 1.000 �0.029 0.035 0.054 1.000
D2 0.2 �0.036 0.043 0.061 1.000 �0.030 0.036 0.065 1.000
D3 0.2 �0.059 0.066 0.078 1.000 �0.049 0.055 0.079 1.000
λg=s0 0 0.010 0.034 0.106 0.001 0.013 0.029 0.094 0.000

Note. λgi = average of three parts of general factor loadings; λs1 averaged across all special factors; D: effect size; λg=s0
averaged across all zero loading estimates;M: number of categories; RMSE: root mean square error; SE: standard error; SIG
%: percent of estimates differed from zero significantly (α ¼ :05).
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18 to 8, and 12 significant correlated residual terms were found. The effect sizes for both cases
were significant and were all around 0.05, which is small. But the identified loading patterns for
the special factor were rather different. Two standard CFA models were fitted with cross-loadings
and residual structure identified in GPCFA and were compared with the baseline model using
Mplus (Muthén & Muthén, 2017). Table 4 shows that both GPCFA-suggested models fitted the
data better than the baseline model, and the GPCFAwith local dependence considered was the best
and sole acceptable model. Table 5 shows that the factorial correlations are similar between the
two models. The results suggest that both cross-loadings and residual covariance contribute to
model fitness when we consider the special effect for the reverse items in HSQ.

Study 2: PISA Reading Assessment: Special Effect for Categorical Data

Educational assessments with testlet effects are common in psychometrics. In this study, we used
the PISA reading assessment for UK in 2000 to explore the testlet effects by GPCFA (Chen & de la
Torre, 2014). The dataset contains 1039 responses with 26 released items from six independent
articles from booklet 8 and 9. For the baseline model, there was one general factor as reading
literacy and 5 special factors as 5 independent articles (the last article was excluded due to too few
items). The correspondent articles with specified items can be found in Appendix F (there is no
cross-loading).

For the GPCFA, we can specify the loadings following the baseline model but leave all other
loadings unspecified (rather than being fixed as zero). As shown in Table 6, the first article had the
biggest effect size of around 0.1, and the fifth article had a moderate special effect (0.076). The
effect sizes of the other three articles were around 0.05 which can be considered as trivial. Five
significant cross-loadings were estimated among special factors without being pre-specified and
were all around .1. Statistically speaking, these items share common stimulation even if they are
not in the same article. The explanations can be sought in many ways. For example, the significant
items estimated in the first special factor might all belong to number sense (Chen & de la Torre,
2014), and these findings might provide a reference for future research. We adopt categorical CFA
to compare the baseline model with GPCFA-suggested model in Mplus. Fit evaluation in Table 7
suggest both models were acceptable with a small difference, but the GPCFA-suggested model
still fitted the data better.

Discussion

Special effects including the method and testlet effects are common issues in psychological and
educational measurement. This research extends the GPCFA framework to accommodate special
effects for continuous and categorical data by modifying the factor structure. The revised GPCFA
can be related to different bifactor, MTMM-type, and testlet effect models by setting different
constraints. A useful indicator D was produced to measure and compare the special effect sizes.
Models for special effects under the revised GPCFA framework offer multidimensionality for both
the general and special factors (or traits) and automatically inherit GPCFA’s benefits to ac-
commodate the partially confirmatory design with regularizations, local dependence, mixed-type
formats, and missingness jointly. As a result, it provides a chance to easily specify novel models
for potential applications within one framework.

Compared with traditional bifactor, MTMM and testlet effect models, the revised GPCFA
framework is more flexible in three ways. First, the proposed model allows for multiple general
factors and special factors with different constraints on factorial correlation and local dependence
flexibly. Second, different from traditional rotation and MLE, the Bayesian Lasso method in
GPCFA can estimate loading matrix and local dependence at the same time while dealing with
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mixed types of variables and missingness in a unified framework. Third, the regularization of
loading structure covers a wide range of the substantive continuum. This partially confirmatory
approach allows for regularization of the loading patterns, resulting in a simpler structure in both
the general and effect parts. Unspecified loadings for both the general and special factors also offer
us more flexibility to incorporate uncertainty (e.g., addressing cross-loadings) during the mod-
eling process. Moreover, one can analyze both the testlet effect in IRT and method effect in factor
analysis with the equivalent effect size in a unified way.

Two simulation studies and corresponding real-life studies were adopted to evaluate and il-
lustrate how the revised GPCFA framework can address special effects for both continuous and
categorical cases under different conditions. Specifically, the small effect size (∼.1) achieved
better model estimation in simulation studies and large effect size (∼.2) might lead to over-
estimating for some parameters. The real-life examples based on the Humor Styles Questionnaire
and PISA reading assessment illustrate how GPCFA can be used to test different special effects
and calculate the effect size. In practice, the special effects are usually around 0.1, and we can
consider random effects with an effect size less than that value as negligible. Finally, the R package
LAWBL (Chen, 2022) is free and powerful in implementing GPCFA with different types of
constraints.

There are a few limitations in this research. From the estimation perspective, Bayesian Lasso is
time-consuming and requires raw data to estimate the procedure. In contrast, the frequentist
approach based on MLE is faster, and only needs summary statistics for typical models. Future
research can explore alternative algorithms that can combine the flexibility of the MCMC and the
efficiency of the MLE. The variational inference (e.g., Anderson & Peterson, 1987; Hinton & Van
Camp, 1993) based on the Bayesian approach is promising, which can inherit many of MCMC’s
benefits and balance computational efficiency and accuracy at the same time. Recently, this
algorithm had been introduced under the FA and structural equation modeling context (Dang &
Maestrini, 2022; Khan et al., 2010), which can provide a basis for its implementation under the
revised GPCFA framework. From the structure perspective, extensions of the GPCFA to

Table 4. Different CFA Models’ Fitness for the Humor Styles Questionnaire.

Model RMSEA CFI TLI SRMR AIC BIC CHÎ 2 DF

M0 0.057 0.858 0.842 0.063 96029.639 96591.861 2017.008 447
M1 0.047 0.906 0.893 0.039 95509.458 96131.385 1472.827 435
M2 0.037 0.944 0.935 0.039 95096.709 95763.415 1042.078 426

Note. RMSEA = root mean square error of approximation; CFA = confirmatory factor analysis; M0 = baseline (no cross-
loading or residual covariance); M1 & M2 = all significant loadings identified in the GPCFA; M1 = GPCFA with local
independent; M2 = GPCFA with all significant residual covariance.

Table 5. Factorial Correlation for the Humor Styles Questionnaire.

Local independent Local dependent

Fg1 Fg2 Fg3 Fg1 Fg2 Fg3

Fg2 0.484 0.504
Fg3 0.246 0.165 0.206 0.177
Fg4 0.234 0.251 0.227 0.251 0.261 0.256

Note. All correlation estimates are significant.
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accommodate more variants such as the three-parameter testlet effect model are worth exploring.
Further research can also empower the revised GPCFA framework for research design in complex
settings by incorporating both structural and measurement components. By regularizing different
structural and measurement parametric matrices flexibly, one is allowed to create many more
partially confirmatory designs that can be used for different purposes. Finally, more empirical

Table 6. Parameter Estimates of the PISA Reading Assessment.

Item Fg1 Fs1 Fs2 Fs3 Fs4 Fs5

1 0.543 0.339
2 0.625 0.406 0.118a

3 0.752 0.448
4 0.608 0.324
5 0.555 0.287
6 0.656 0.141a

7 0.710 0.219
8 0.560
9 0.540 0.393
10 0.515 0.265
11 0.684 0.128a

12 0.681 0.112a 0.131a

13 0.647 0.107a 0.221a

14 0.639 0.288a

15 0.648 0.195a

16 0.645 0.187a

17 0.737 0.276
18 0.765 0.263a

19 0.568 0.296
20 0.647 0.282
21 0.803
22 0.829 0.106a

23 0.750 0.319
24 0.600 0.486
25 0.691 0.139a

26 0.639 0.100a

D 0.102 0.058 0.050 0.062 0.076

Note. Fg1: Reading literacy; Fs1 - Fs5: 5 different articles; D: effect size; only significant and above .1 loadings are presented;
underscored are unspecified loadings.
aIndicates non-significant loadings.

Table 7. Different CCFA Models’ Fitness for the PISA.

Model RMSEA CFI TLI SRMR CHÎ 2 DF

M0 0.023 0.990 0.988 0.039 431.199 275
M1 0.017 0.995 0.994 0.035 352.562 272

Note. RMSEA = root mean square error of approximation; CCFA = categorical confirmatory factor analysis; M0 = baseline;
M1 = GPCFA suggested.
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evidence across different real-life scenarios is still desirable to demonstrate the capacity of GPCFA
to accommodate various special effects in practice.
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Appendix 

Appendix A. Brief introduction of GPCFA estimation procedures 

GPCFA address regularization estimation on unspecified loadings and residual 

covariance matrix with Bayesian Lasso. The Bayesian mixed Lasso problem for 

Equation 2) is to maximize the penalized log-likelihood: 

𝑁

2
log|𝚺| −

1

𝑧
tr(𝑺𝚺) −∑ ∑ 𝛾𝑗𝑘|𝜆𝑗𝑘

′ | − 𝛾𝑠‖𝚺‖1
𝐾𝑗
′

𝑘=1

𝐽

𝑗=1
 

Where 𝚺 = (𝜎𝑗𝑗′)𝐽×𝐽
= 𝚿−𝟏, 𝐒 = (𝐘𝐓 − 𝛍− 𝚲𝐅𝐓)(𝐘𝐓 − 𝛍 − 𝚲𝐅𝐓)𝐓.  

For unspecified loadings, 𝛾𝑗𝑘 is the shrinkage parameter for Bayesian adaptive 

Lasso with conditional double exponential priors: 

𝑝(𝜆𝑗
′|𝛾𝑗1, … , 𝛾𝑗𝐾𝑗

′) ∝∏ {
𝛾𝑗𝑘

2
exp⁡(−𝛾𝑗𝑘|𝜆𝑗𝑘

′ |)}
𝐾𝑗
′

𝑘=1
 

To address local dependence, covariance Lasso was applied for 𝚺 with shrinkage 

parameter 𝛾𝑠 and L1 norm ‖⁡𝚺‖1 = ∑ |𝜎𝑗𝑗′|1≤𝑗,𝑗′≤𝐽 . The conditional double 

exponential priors are: 

𝑝(𝚺|𝛾𝑠) ∝∏ {
𝛾𝑠
2
exp⁡(−𝛾𝑠|𝜎𝑗𝑗′|)}

𝑗<𝑗′
∏ {

𝛾𝑠
2
exp⁡(−

𝛾𝑠
2
|𝜎𝑗𝑗|)}

𝐽

𝑗=1
 

Hierarchical representation for penalties is: 

𝜆𝑗
′~𝑁𝐾𝑗

′ (0, 𝐷𝜏𝑗), 

𝐷𝜏𝑗 = 𝑑𝑖𝑎𝑔 (𝜏1𝑗1
2 ,⋯ , 𝜏

1𝑗𝐾𝑗
′

2 ), 

𝜏1𝑗𝑘
2 ~𝐺𝑎𝑚𝑚𝑎(1,

𝛾𝑗𝑘
2

2
) , 𝑘 = 1,⋯ , 𝐾𝑗

′, 

And 

𝑝(𝜎𝑗𝑗′|𝜏2𝑗𝑗′)𝑗<𝑗′ ∝ 𝜏
2𝑗𝑗′

−
1
2 exp(−

𝜎𝑗𝑗′
2

𝜏2𝑗𝑗′
), 

𝑝(𝜎𝑗𝑗|𝛾𝑠) ∝
𝛾𝑠
2
exp(−

𝛾𝑠𝜎𝑗𝑗′

2
), 

𝑝(𝜏2𝑗𝑗′|𝛾𝑠)𝑗<𝑗′ ∝
𝛾𝑠
2

2
exp(−

𝛾𝑠
2𝜏2𝑗𝑗′

2
), 

Other priors for shrinkage and other parameters are: 
𝛾𝑠~𝐺𝑎𝑚𝑚𝑎(𝑎𝑠, 𝑏𝑠), 

𝛾𝑗𝑘
2 ~𝐺𝑎𝑚𝑚𝑎(𝑎𝑗𝑘, 𝑏𝑗𝑘), 𝑗 = 1,⋯ , 𝐽, 𝑘 = 1,⋯ ,𝐾𝑗

′, 

𝜆𝑗
′′~𝑁𝐾𝑗

′′(𝜆0𝑗 , 𝐻0𝑗), 𝑗 = 1,⋯ , 𝐽, 

𝜇~𝑁𝐽−𝐽𝑝(𝜇0, 𝐻𝜇0), 

Φ~𝐼𝑛𝑣 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑆0
−1, 𝑣0), 

𝑃(𝛼𝑗) ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑗 = 1,⋯ , 𝐽𝑝 

Where superscript ∎′ and ∎′′ indicate the unspecified and specified parameters unless 

otherwise stated. 

All the hyperparameters are preassigned as: 𝑎𝑠 = 𝑎𝑗𝑘 = 1;⁡𝑏𝑠 = 𝑏𝑗𝑘 = .01;⁡𝜆0𝑗 =

𝜇0 = 0;⁡𝑣0 = 𝐾 + 2;𝐻0𝑗 = 𝐻𝜇0 = 4𝐼⁡(𝐼⁡𝑖𝑠⁡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦⁡𝑚𝑎𝑡𝑟𝑖𝑥);⁡𝑆0 is identity matrix 

with off-diagonal terms as .1. 

For a complete theoretical derivation of the Bayesian Lasso procedures and 

sensitivity analysis of the prior values, readers can refer to the GPCFA literature (e.g., 

Chen, 2020, 2021; Chen et al., 2021). 
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Appendix B. Estimates of General Factor Loadings and Residuals for Study 1.   

  ϕ = 0.3  ϕ = 0.6 

Par True BIAS RMSE SE SIG%  BIAS RMSE SE SIG% 

  D = 0.1 

𝜆11 0.5 0.018 0.045 0.095 0.995  0.006  0.044  0.146  1.000  

𝜆12 0.55 0.021 0.039 0.098 1.000  0.000  0.043  0.156  1.000  

𝜆13 0.6 0.039 0.053 0.101 1.000  0.033  0.054  0.152  1.000  

𝜆14 0.65 0.065 0.072 0.113 1.000  0.042  0.058  0.158  1.000  

𝜆15 0.7 -0.056 0.066 0.086 1.000  -0.104  0.112  0.122  1.000  

𝜆16 0.75 0.010 0.031 0.099 1.000  -0.031  0.048  0.140  1.000  

𝜆27 0.5 -0.010 0.034 0.080 1.000  -0.030  0.049  0.130  1.000  

𝜆28 0.55 -0.012 0.029 0.080 1.000  -0.035  0.048  0.128  1.000  

𝜆29 0.6 -0.025 0.036 0.077 1.000  -0.050  0.061  0.122  1.000  

𝜆2,10 0.65 -0.028 0.038 0.076 1.000  -0.054  0.062  0.122  1.000  

𝜆2,11 0.7 -0.001 0.022 0.080 1.000  -0.028  0.040  0.130  1.000  

𝜆2,12 0.75 -0.011 0.022 0.077 1.000  -0.047  0.053  0.126  1.000  

𝜆3,13 0.5 -0.001 0.030 0.083 1.000  -0.014  0.039  0.140  1.000  

𝜆3,14 0.55 -0.007 0.027 0.082 1.000  -0.022  0.042  0.136  1.000  

𝜆3,15 0.6 -0.019 0.036 0.079 1.000  -0.039  0.051  0.130  1.000  

𝜆3,16 0.65 -0.023 0.036 0.079 1.000  -0.052  0.061  0.128  1.000  

𝜆3,17 0.7 0.004 0.025 0.080 1.000  -0.030  0.042  0.128  1.000  

𝜆3,18 0.75 -0.007 0.023 0.079 1.000  -0.048  0.055  0.126  1.000  

ψ
𝑖𝑖

 0.650 -0.013 0.041 0.116 1.000  -0.013 0.039 0.115 1.000 

ψ
𝑗𝑗

 0.598 0.005 0.033 0.106 1.000  0.004 0.033 0.106 1.000 

ψ
𝑘𝑘

 0.540 -0.010 0.036 0.096 1.000  -0.010 0.034 0.095 1.000 

ψ
𝑙𝑙

 0.478 -0.006 0.037 0.098 1.000  0.002 0.032 0.096 1.000 

ψ
𝑚𝑚

 0.410 -0.031 0.095 0.075 1.000  -0.028 0.099 0.077 1.000 

ψ
𝑛𝑛

 0.338 0.003 0.084 0.079 1.000  0.011 0.083 0.079 1.000 

  D = 0.2 

𝜆11 0.5 0.022 0.054 0.104 0.990  0.000 0.069 0.179 0.920 

𝜆12 0.55 0.026 0.050 0.110 0.995  -0.002 0.064 0.191 0.925 

𝜆13 0.6 0.045 0.063 0.104 1.000  0.048 0.075 0.174 0.990 

𝜆14 0.65 0.220 0.224 0.095 1.000  0.197 0.203 0.138 0.995 

𝜆15 0.7 -0.100 0.107 0.073 1.000  -0.124 0.137 0.120 1.000 

𝜆16 0.75 0.054 0.064 0.078 1.000  0.033 0.062 0.122 1.000 

𝜆27 0.5 -0.030 0.058 0.132 0.935  -0.103 0.124 0.206 0.545 

𝜆28 0.55 -0.030 0.056 0.143 0.940  -0.110 0.131 0.224 0.615 

𝜆29 0.6 -0.080 0.092 0.122 0.920  -0.145 0.163 0.197 0.725 

𝜆2,10 0.65 -0.089 0.101 0.125 0.940  -0.165 0.183 0.200 0.750 

𝜆2,11 0.7 0.009 0.049 0.138 0.960  -0.087 0.129 0.232 0.755 

𝜆2,12 0.75 -0.004 0.050 0.138 0.960  -0.105 0.144 0.228 0.785 

𝜆3,13 0.5 -0.018 0.070 0.145 0.890  -0.073 0.112 0.210 0.655 

𝜆3,14 0.55 -0.021 0.073 0.152 0.890  -0.078 0.122 0.219 0.680 

𝜆3,15 0.6 -0.077 0.101 0.132 0.895  -0.138 0.162 0.205 0.700 

𝜆3,16 0.65 -0.086 0.111 0.135 0.900  -0.165 0.188 0.205 0.690 

𝜆3,17 0.7 -0.011 0.081 0.145 0.915  -0.114 0.156 0.221 0.720 

𝜆3,18 0.75 -0.023 0.089 0.145 0.915  -0.132 0.173 0.223 0.730 

ψ𝑖𝑖 0.550 -0.006 0.134 0.158 1.000  0.011 0.133 0.164 1.000 

ψ𝑗𝑗 0.498 0.070 0.108 0.139 1.000  0.093 0.120 0.142 1.000 
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Note. Ψii averaged across elements for i = 1,7,13; j = 2,8,14,k = 3,9,15, l = 4,10,16, 

m = 5,11,17, n = 6,12,18; RMSE: root mean square error; SE: standard error; SIG%: 

percent of estimates differed from zero significantly (𝛼 = .05). 
 

Appendix C. Path Diagram for the True Models of Simulation Study 

 

 
True model of simulation study 1: solid edges refer to specified loadings (i.e., set as 1 in Q matrix) 

and dash edges refers to unspecified loadings (i.e., set as -1 in Q matrix). For simplicity, residual 

structure is not presented. For local dependence, nonzero off-diagonal elements of 𝚿 were ψ13 =
ψ31 = ψ23 = ψ32 = ψ46 = ψ64 = ψ56 = ψ65 = 0.2. 

 

ψ𝑘𝑘 0.440 -0.022 0.057 0.115 1.000  -0.016 0.050 0.118 1.000 

ψ𝑙𝑙 0.378 -0.065 0.106 0.112 1.000  -0.047 0.093 0.120 1.000 

ψ𝑚𝑚 0.310 -0.034 0.150 0.082 1.000  -0.033 0.151 0.082 1.000 

ψ𝑛𝑛 0.238 -0.001 0.137 0.086 1.000  0.004 0.133 0.089 1.000 
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True model of simulation study 2: solid edges refer to specified loadings (i.e., set as 1 in Q matrix) 

and dash edges refers to unspecified loadings (i.e., set as -1 in Q matrix). Note that there is an 

observable variable on each latent response variable y. 
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Appendix D. LAWBL Syntax for Special Effect 
devtools::install_github("Jinsong-Chen/LAWBL") 

library(LAWBL) 

 

rseed<-1234 

#### set true parameters #### 

N=1000                # sample size 

K_general=3;K_group=3 # number of general factors and special factors 

K=K_general+K_group 

J=18                  # number of items 

EF<-c(0.1,0.1,0.1)    # effect size for each special factor 

PHI<-0.3              # factor correlation 

 

R<-matrix(0,K,K)      # factor correlation matrix 

R[1:K_general,1:K_general]<-PHI 

diag(R)<-1 

 

mla <- matrix(0,J,K)  # true loading matrix (sample from simulation study 1) 

mla[1:6,1]<-mla[7:12,2]<-mla[13:18,3]<-c(.5,.55,.6,.65,.7,.75) 

mla[c(1:2,7:8,13:14),4]<-sqrt(EF[1]) 

mla[c(3:4,9:10,15:16),5]<-sqrt(EF[2]) 

mla[c(5:6,11:12,17:18),6]<-sqrt(EF[3]) 

 

#### set specified Q matrix #### 

# Q matrix can be set with 1:specified, 0:zero, -1:unspecified 

Q<-matrix(-1,J,K)      

Q[,(K_general+1):K]=0  

Q[mla!=0]=1          

 

#### generate raw data #### 

dat <- sim_lvm(N=N,lam=mla,phi=R,rseed=rseed)$dat 

 

#### estmate the model #### 

model<-

pcfa(dat=dat,Q=Q,LD=T,ort.fac=c(rep(0,K_general),rep(1,K_group)),sign_check=T,burn=20000,iter=20000,alas=

T,verbose=T) 

EFFECT<-effect(m,group=c(rep(0,K_general),rep(1,K_group))) 

 

#### get results  

plot_lawbl(model) 

summary(model,what="all",detail=T) 
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Appendix E. Humor Styles Questionnaire 
Item Content Factor 

1R I usually don't laugh or joke around much with other people. Fg1 

2 If I am feeling depressed, I can usually cheer myself up with humor. Fg2 

3 If someone makes a mistake, I will often tease them about it. Fg3 

4 I let people laugh at me or make fun at my expense more than I should. Fg4 

5 I don't have to work very hard at making other people laugh -- I seem to be a 

naturally humorous person. 
Fg1 

6 Even when I'm by myself, I'm often amused by the absurdities of life. Fg2 

7 R People are never offended or hurt by my sense of humor. Fg3 

8 I will often get carried away in putting myself down if it makes my family or 

friends laugh. 
Fg4 

9 R I rarely make other people laugh by telling funny stories about myself. Fg1 

10 If I am feeling upset or unhappy I usually try to think of something funny about 

the situation to make myself feel better. 
Fg2 

11 When telling jokes or saying funny things, I am usually not very concerned about 

how other people are taking it. 
Fg3 

12 I often try to make people like or accept me more by saying something funny about 

my own weaknesses, blunders, or faults. 
Fg4 

13 I laugh and joke a lot with my friends. Fg1 

14 My humorous outlook on life keeps me from getting overly upset or depressed 

about things. 
Fg2 

15 R I do not like it when people use humor as a way of criticizing or putting someone 

down. 
Fg3 

16 R I don't often say funny things to put myself down. Fg4 

17 R I usually don't like to tell jokes or amuse people. Fg1 

18 If I'm by myself and I'm feeling unhappy, I make an effort to think of something 

funny to cheer myself up. 
Fg2 

19 Sometimes I think of something that is so funny that I can't stop myself from saying 

it, even if it is not appropriate for the situation. 
Fg3 

20 I often go overboard in putting myself down when I am making jokes or trying to 

be funny. 
Fg4 

21 I enjoy making people laugh. Fg1 

22 R If I am feeling sad or upset, I usually lose my sense of humor. Fg2 

23 R I never participate in laughing at others even if all my friends are doing it. Fg3 

24 When I am with friends or family, I often seem to be the one that other people make 

fun of or joke about. 
Fg4 

25 R I don't often joke around with my friends. Fg1 

26 It is my experience that thinking about some amusing aspect of a situation is often 

a very effective way of coping with problems. 
Fg2 

27 If I don't like someone, I often use humor or teasing to put them down. Fg3 

28 If I am having problems or feeling unhappy, I often cover it up by joking around, 

so that even my closest friends don't know how I really feel. 
Fg4 

29 R I usually can't think of witty things to say when I'm with other people. Fg1 

30 I don't need to be with other people to feel amused -- I can usually find things to 

laugh about even when I'm by myself. 
Fg2 

31 R Even if something is really funny to me, I will not laugh or joke about it if someone 

will be offended. 
Fg3 

32 Letting others laugh at me is my way of keeping my friends and family in good 

spirits. 
Fg4 

Note. Fg1 = affiliative humor; Fg2 = self-enhancing humor; Fg3 = aggressive humor; Fg4 

= self-defeating humor; R = reverse item (Fs1). 
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Appendix F. 26 items in PISA and corresponding articles. 

Item Item code Article (Special Factor) 

1 R040Q02 Fs1 

2 R040Q03A Fs1 

3 R040Q03B Fs1 

4 R040Q04 Fs1 

5 R040Q06 Fs1 

6 R077Q02 Fs2 

7 R077Q03 Fs2 

8 R077Q04 Fs2 

9 R077Q05 Fs2 

10 R077Q06 Fs2 

11 R088Q01 Fs3 

12 R088Q03 Fs3 

13 R088Q04T Fs3 

14 R088Q05T Fs3 

15 R088Q07 Fs3 

16 R110Q01 Fs4 

17 R110Q04 Fs4 

18 R110Q05 Fs4 

19 R110Q06 Fs4 

20 R216Q01 Fs5 

21 R216Q02 Fs5 

22 R216Q03T Fs5 

23 R216Q04 Fs5 

24 R216Q06 Fs5 

25 R236Q01 Fs6 

26 R236Q02 Fs6 
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